Tomado de:
http://www.beyondneanderthal.com/page3.html
Hechos:
El clima en el Hemisferio Norte en el 2006/7 fue de un invierno salvajemente frío. Supervisé la noticia en los medios de comunicación, basados en Internet, entre diciembre de 2006 y febrero de 2007 y descubrí que:
En los EE.UU., hubo 4 millones de personas sin electricidad durante cortos períodos, cuando se produjeron en todo el país tormentas de nieve y olas de frío. Aunque no es estadísticamente significativo, este número fue, sin embargo, el más alto en varios años. Abril fue el mes más frío en 113 años.
En el norte del Reino Unido y en el norte de Europa, 1 millón de personas estuvieron sin electricidad mientras, desde el Atlántico soplaban gélidas tormentas, acompañadas de vientos hasta de 216 kph.
El argumento del Calentamiento Global asume una vinculación de causa y efecto con las emisiones de gases invernadero. Y está basado en una predicción tipo "palo de hockey" que se genera a partir de un modelo informático desarrollado para el Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC). Una evaluación independiente de ese modelo estadístico - por un grupo encabezado por el Dr Edward Wegman, profesor en el Centro de Cálculo de estadísticas de la Universidad George Mason - llegó a la conclusión de que el modelo era defectuoso. Wegman es presidente de la Comisión de Estadística Teórica y Aplicada de la Academia Nacional de Ciencias, y miembro de la junta directiva de la Asociación Americana de Estadística. A pesar de lo que se pueda intuír, el grupo de Wegman llegó a la conclusión que no existe un vínculo estadísticamente relevante entre las emisiones de CO2 y el cambio climático.
Sí, es un hecho que el Ártico en el norte, la Antártida Occidental en el sur y también muchos glaciares se están derritiendo. Sin embargo, también es un hecho que la Capa de Hielo del Antártico Occidental está creciendo y se está enfriándo aún más. La Antártida es siete veces más grande que el Ártico y Groenlandia juntos. Más del 80% del hielo del mundo se encuentra en la Antártida, -del cual el 70% se encuentra en la plataforma oriental -, la cual añadió 45 millones de toneladas de hielo adicionales en los once años anteriores al 2003.
Este mapa (a la izquierda) muestra los principales zonas de la Antártida, incluida la inmensa capa de hielo de la Antártida Oriental. La imagen de la derecha muestra las zonas de hielo del continente que están engrosando (de color amarillo y rojo) y las que están adelgazando (de color azul). Esta imagen (la de arriba a la derecha) es el resultado de un sorprendente trabajo de investigación que se puede encontrar en la http://www.nature.com/news/2005/050516/full/050516-10.html
Varios Cientificos nos hablan del Calentamiento Global y del Desatre que significa para la Humanidad, pero ... es cierto? ... es tan temible?
Sunday, April 20, 2008
Tuesday, April 15, 2008
La NASA confirma: el “Ciclo Solar 24″ ha comenzado.
Llegará el frío?
Jan 7th, 2008
Jan 7th, 2008
Publicado en http://www.desdeelexilio.com
By Luis I. Gómez
El tiempo pasa que es una maravilla y con cada semana que dejamos atrás en el calendario más interesante se pone la discusión en torno al Cambio Climático. Hace unas semanas ya les adelantaba algo sobre los trabajos de varios científicos de la Academia de Ciencias Rusa (entre ellos -vuelve a estar hoy de actualidad - Oleg Sorokhtin) sobre los ciclos solares y su influencia sobre el clima terrestre. Como nuestra dependencia científica es, respecto a USA, prácticamente absoluta, no dudo que la mayoría de ustedes se quedasen con la copla pero no con la suficiente intensidad.
Pues bien, ahora es la mismísima NASA la que hace público lo que ya se sospechaba desde 1996: el llamado “Ciclo Solar 24″ ha comenzado ya. Y ello confirma que le llegará la hora al “Ciclo 25″ Y eso, qué es? El Sol, mejor dicho en este caso, su superficie, está sujeta en su actividad a diversos factores. Las observaciones de los últimos decenios han permitido a los astrofísicos determinar ciclos de periodicidad en algunas de las alteraciones en la actividad solar. Ello quiere decir que hay fenómenos que se repiten en ciclos más o menos regulares, de forma constante. El último ciclo completo observado era el llamado “ciclo 23″. Ya el año 1996, los astrofísicos de la NASA adelantaban sus previsiones para la actividad solar durante los ciclos 24 y 25.
Vale. Y? (como diría Manin) El pasado 2 de enero, el director del SSRC (Space and Science Research Center), John Casey confirmaba las investigaciones previas llevadas a cabo por diversos grupos independientes de científicos según las cuales la actividad solar no sólo está sujeta a ciclos, sino que además tiene una influencia determinante en los procesos de calentamiento y enfríamiento de nuestro planeta.
“We today confirm the recent announcement by NASA that there are historic and important changes taking place on the sun’s surface. This will have only one outcome - a new climate change is coming that will bring an extended period of deep cold to the planet. This is not however a unique event for the planet although it is critically important news to this and the next generations. It is but the normal sequence of alternating climate changes that has been going on for thousands of years. Further according to our research, this series of solar cycles are so predictable that they can be used to roughly forecast the next series of climate changes many decades in advance. I have verified the accuracy of these cycles’ behavior over the last 1,100 years relative to temperatures on Earth, to well over 90%.”
En paladín: no estamos ante las locuras de un científico ruso loco en su soledad siberiana. Casey continúa diciéndonos:
The general opinion of the SSRC scientists is that it could begin even sooner within 3 years with the next solar cycle 24. What we are saying today is that my own research and that of the other scientists at the SSRC verifies that NASA is right about one thing – a solar cycle of 50 or lower is headed our way. With this next solar minimum predicted by NASA, what I call a “solar hibernation,” the SSRC forecasts a much colder Earth just as it has transpired before for thousands of years. If NASA is the more accurate on the schedule, then we may see even warmer temperatures before the bottom falls out. If the SSRC and other scientists around the world are correct then we have only a few years to prepare before 20-30 years of lasting and possibly dangerous cold arrive.”
En otras palabras: no tenedremos que esperar al ciclo 25 para entrar en una época “fría”, el ciclo 24 ya tendrá una influencia papable sobre la temperatura terrestre. Y nos advierte de que hará mucho frío. Pero sigamos leyendo:
Casey was asked whether the government has been notified. “Yes, as soon as my research revealed these solar cycles and the prediction of the coming cold era with the next climate change, I notified all the key offices in the Bush administration including both parties in the Senate and House science committees as well as most of the nation’s media outlets. Unfortunately, because of the intensity of coverage of the UN IPCC and man made global warming during 2007, the full story about climate change is very slow in getting told. These changes in the sun have begun. They are unstoppable. With the word finally starting to get out about the next climate change, hopefully we will have time to prepare. Right now, the newly organized SSRC is the leading independent research center in the US and possibly worldwide, that is focused on the next climate change. Some of the world’s brightest scientists, also experts in solar physics and the next climate change have joined with me. In the meantime we will do our best to spread the word along with NASA and others who can see what is about to take place for the Earth’s climate. Soon, I believe this will be recognized as the most important climate story of this century.”
Lo que ya sospechábamos: llevan meses intentando que se les haga caso, pero como estamos en plena histeria del calentamiento, no se ha movido ni “el tato”.
La nota oficial del Space and Science Research Center aquí.
Todo lo que siempre quisieron saber sobre ciclos solares y nunca se atrevieron a preguntar, aquí.
Y las notas de prensa que confirman que no me he inventado esta historia, aquí y aquí.
Y termino: nada cambia en mi posición de fondo. Tanto si avanzamos hacia un período de calentamiento, como si lo hacemos de enfríamiento, el pánico sobra. La histeria sobra. El uso político de los cambios naturales sobra. El antropocentrismo sobra. Y las mentiras, por supuesto, sobran. El hombre ha sido capaz de adaptarse hasta ahora y así seguirá siendo… hasta que la naturaleza decida que dejemos de exisitir como especie. Entonces les diremos a Al Gore y sus seguidores que nos presten un par de dólares para solucionar el tema. Verán qué risa.
Actualización: Parece ser que la página web de J. Casey es una página “ad hoc”, encaminada a difundir exclusivamente una “nota de prensa” de su responsable. Ello no altera en absoluto la seriedad de las fuentes citadas fuera de la web del SSRC. Sería lamentable que Casey, utilizando los trabajos de destacados miembros de la academia Rusa de Ciencias y de sus propios ex-colegas en la NASA, hubiese montado todo este tinglado únicamente por afán lucrativo.
Exactamente igual de lamentable que resulta el tinglado montado por Al Gore, con exactamente los mismos fines. Intentaré mantenerles informados de cómo evoluciona este asunto, dado que lo que realmente está en juego es el buen nombre de Sorokhtin y sus colegas (entre otros David Whitehouse y Ernest C. Njau).
Y termino: nada cambia en mi posición de fondo. Tanto si avanzamos hacia un período de calentamiento, como si lo hacemos de enfríamiento, el pánico sobra. La histeria sobra. El uso político de los cambios naturales sobra. El antropocentrismo sobra. Y las mentiras, por supuesto, sobran. El hombre ha sido capaz de adaptarse hasta ahora y así seguirá siendo… hasta que la naturaleza decida que dejemos de exisitir como especie. Entonces les diremos a Al Gore y sus seguidores que nos presten un par de dólares para solucionar el tema. Verán qué risa.
Actualización: Parece ser que la página web de J. Casey es una página “ad hoc”, encaminada a difundir exclusivamente una “nota de prensa” de su responsable. Ello no altera en absoluto la seriedad de las fuentes citadas fuera de la web del SSRC. Sería lamentable que Casey, utilizando los trabajos de destacados miembros de la academia Rusa de Ciencias y de sus propios ex-colegas en la NASA, hubiese montado todo este tinglado únicamente por afán lucrativo.
Exactamente igual de lamentable que resulta el tinglado montado por Al Gore, con exactamente los mismos fines. Intentaré mantenerles informados de cómo evoluciona este asunto, dado que lo que realmente está en juego es el buen nombre de Sorokhtin y sus colegas (entre otros David Whitehouse y Ernest C. Njau).
Y ahora... el enfriamiento global
Publicado el 09/01/2008, por M. Llamas / J. Ansorena.
Un centro de investigación independiente de Florida confirma una teoría anunciada por la NASA en 2006: el Sol entrará en un proceso de “hibernación” en apenas 20 ó 30 años. El nuevo ciclo solar podría provocar una “peligrosa llegada de frío” al planeta.
Donde dije digo... El supuesto consenso científico en torno a la existencia de un progresivo calentamiento global provocado por el aumento de las emisiones de CO2 a la atmósfera del planeta corre el riesgo de convertirse en una de las mayores falacias de la historia de la ciencia. Al menos, si se confirma una nueva teoría acerca del cambio climático que es totalmente opuesta a la defendida por el Panel Intergubernamental para el Cambio Climático (IPCC) de la Organización de Naciones Unidas (ONU). Las previsiones del IPCC apuntan a que las temperaturas a finales de este siglo aumentarán entre 1,8 y 4 grados respecto al periodo 1980-1999. Pero la realidad puede ser bien distinta: hacia el año 2030, las temperaturas podrían descender drásticamente. El calentamiento climático que sufre el planeta, de apenas 0,017 grados centígrados al año, según las mediciones que desde 1979 realizan los satélites en diferentes niveles de la atmósfera terrestre –estimaciones mucho más precisas que las realizadas en la superficie–, podría mutar hacia el inicio de una nueva era glaciar o, al menos, de enfriamiento global. La causa de este particular proceso respondería a los distintos ciclos de actividad que cada cientos o, incluso, miles de años, registra el Sol.
Deceleración
El Space and Science Research Center (SSRC) de Florida acaba de confirmar una teoría sobre la reducción de la actividad solar avanzada por la NASA en 2006. Entonces, la entidad científica más prestigiosa del planeta en materia de investigación espacial detectó un particular fenómeno: "La superficie del Sol está experimentando importantes cambios" que podrían tener "repercusiones sustanciales sobre la futura actividad solar". "Normalmente, el cinturón solar avanza a una velocidad media de 1 metro por segundo. Sin embargo, en los últimos años, se ha decelerado hasta los 0,75 metros por segundo en su parte norte y hasta 0,35 en el sur. Nunca hemos observado una velocidad tan baja", afirmaba entonces la NASA. De acuerdo con esta teoría, puesto que la velocidad de dicho cinturón influye en la intensidad solar, "un cinturón lento implica una actividad solar más baja", según los científicos del organismo espacial estadounidense.
Según la observación de los expertos, tales indicios apuntan a que el denominado "Ciclo Solar 25 comenzará a partir de 2022", y éste implicará uno de los periodos de actividad solar "más débiles desde hace siglos". Ahora, el SSRC de Florida acaba de confirmar la teoría anunciada por la NASA. Según el director de este organismo, John Casey, los cambios que experimenta la superficie del Sol son "el resultado de ciclos que provocan oscilaciones climáticas que varían desde el enfriamiento al calentamiento una y otra vez" en el planeta Tierra.Por ello, "se avecina un nuevo cambio climático", pero, a diferencia de lo defendido por la ONU y los grupos ecologistas, provocará "un periodo de intenso frío en el planeta". El departamento que dirige Casey afirma que la alternancia de los distintos ciclos solares a lo largo de los últimos 1.100 años influye de forma directa en las temperaturas que registra la Tierra en una probabilidad superior al 90%, según el estudio de SSRC. La llegada del Ciclo 25, tal y como anunció la NASA, provocará un "enfriamiento global". Un fenómeno que Casey no duda en denominar "hibernación solar". De hecho, según esta misma teoría, "no resultaría extraño que se registrasen temperaturas más altas en el planeta justo antes de que éstas caigan de forma drástica", advierte. Algo que coincidiría con el proceso de calentamiento global que acontece en la actualidad. Este organismo prevé que la "llegada de una peligrosa era glaciar" se producirá en apenas 20 ó 30 años.
Debilidades del IPCC
De confirmarse, este fenómeno desmontaría toda la teoría del calentamiento que tanta preocupación ha generado a lo largo de los últimos años, y cuya causa, según la ONU, se debe a la actividad humana: la emisión de gases de efecto invernadero a la atmósfera. De este modo, el supuesto consenso científico presenta, en realidad, grandes debilidades. El documental El gran timo del cambio climático, dirigido por el británico Martin Durkin, ya adelantaba una teoría muy similar basada en la opinión de diversos científicos repudiados por el IPCC. La Academia de Ciencias Rusa reafirmó también la importancia de la actividad solar en el clima del planeta: "Se avecina una glaciación", advirtieron.
Las ‘pequeñas Edades de Hielo’
El enfriamiento climático de la Tierra debido a la relajación de la actividad solar no es nuevo: en el último milenio ha habido varios de estos ciclos bien documentados. Los últimos son el Mínimo Spörer (1420-1570), el Mínimo Maunder (1645-1715) y el Mínimo Dalton (1790-1820). En España, estos periodos glaciales en miniatura hicieron que se vieran hielos flotantes en Baleares, en la primera semana de 1697, o las reiteradas ocasiones en las que el río Ebro se congeló junto al mar, en Tortosa, en diciembre de 1506, cuando la gente lo cruzaba a pie. Estos ciclos, cuyo frío e impacto en la agricultura fueron un grave problema para la subsistencia humana, dejó al menos algunas curiosidades celebradas. Por ejemplo, un estudio estadounidense asegura que los violines construidos al final del Mínimo Maunder por Amati, Guarneri y Stradivarius debieron su calidad no sólo a la maestría de estos luthiers, sino también a las características de la madera de los árboles que crecieron en ese periodo, lo que marcó, quizá, la diferencia en el tono y brillantez de los instrumentos.
Monday, April 14, 2008
Long Range Solar Forecast
Solar Cycle 25 peaking around 2022 could be one of the weakest in centuries.
http://www.amazon.com/gp/daily/ref=cm_dly_open
May 10, 2006: The Sun's Great Conveyor Belt has slowed to a record-low crawl, according to research by NASA solar physicist David Hathaway. "It's off the bottom of the charts," he says. "This has important repercussions for future solar activity."
The Great Conveyor Belt is a massive circulating current of fire (hot plasma) within the Sun. It has two branches, north and south, each taking about 40 years to perform one complete circuit. Researchers believe the turning of the belt controls the sunspot cycle, and that's why the slowdown is important.
Right: The sun's "Great Conveyor Belt" in profile.
"Normally, the conveyor belt moves about 1 meter per second—walking pace," says Hathaway. "That's how it has been since the late 19th century." In recent years, however, the belt has decelerated to 0.75 m/s in the north and 0.35 m/s in the south. "We've never seen speeds so low."
According to theory and observation, the speed of the belt foretells the intensity of sunspot activity ~20 years in the future. A slow belt means lower solar activity; a fast belt means stronger activity. The reasons for this are explained in the Science@NASA story Solar Storm Warning.
http://www.amazon.com/gp/daily/ref=cm_dly_open
May 10, 2006: The Sun's Great Conveyor Belt has slowed to a record-low crawl, according to research by NASA solar physicist David Hathaway. "It's off the bottom of the charts," he says. "This has important repercussions for future solar activity."
The Great Conveyor Belt is a massive circulating current of fire (hot plasma) within the Sun. It has two branches, north and south, each taking about 40 years to perform one complete circuit. Researchers believe the turning of the belt controls the sunspot cycle, and that's why the slowdown is important.
Right: The sun's "Great Conveyor Belt" in profile.
"Normally, the conveyor belt moves about 1 meter per second—walking pace," says Hathaway. "That's how it has been since the late 19th century." In recent years, however, the belt has decelerated to 0.75 m/s in the north and 0.35 m/s in the south. "We've never seen speeds so low."
According to theory and observation, the speed of the belt foretells the intensity of sunspot activity ~20 years in the future. A slow belt means lower solar activity; a fast belt means stronger activity. The reasons for this are explained in the Science@NASA story Solar Storm Warning.
"The slowdown we see now means that Solar Cycle 25, peaking around the year 2022, could be one of the weakest in centuries," says Hathaway.
This is interesting news for astronauts. Solar Cycle 25 is when the Vision for Space Exploration should be in full flower, with men and women back on the Moon preparing to go to Mars. A weak solar cycle means they won't have to worry so much about solar flares and radiation storms.
Above: In red, David Hathaway's predictions for the next two solar cycles and, in pink, Mausumi Dikpati's prediction for cycle 24.
On the other hand, they will have to worry more about cosmic rays. Cosmic rays are high-energy particles from deep space; they penetrate metal, plastic, flesh and bone. Astronauts exposed to cosmic rays develop an increased risk of cancer, cataracts and other maladies. Ironically, solar explosions, which produce their own deadly radiation, sweep away the even deadlier cosmic rays. As flares subside, cosmic rays intensify—yin, yang.
Hathaway's prediction should not be confused with another recent forecast: A team led by physicist Mausumi Dikpata of NCAR has predicted that Cycle 24, peaking in 2011 or 2012, will be intense. Hathaway agrees: "Cycle 24 will be strong. Cycle 25 will be weak. Both of these predictions are based on the observed behavior of the conveyor belt."
How do you observe a belt that plunges 200,000 km below the surface of the sun?
"We do it using sunspots," Hathaway explains. Sunspots are magnetic knots that bubble up from the base of the conveyor belt, eventually popping through the surface of the sun. Astronomers have long known that sunspots have a tendency to drift—from mid solar latitudes toward the sun's equator. According to current thinking, this drift is caused by the motion of the conveyor belt. "By measuring the drift of sunspot groups," says Hathaway, "we indirectly measure the speed of the belt."
Right: Hathaway monitors the speed of the Conveyor Belt by plotting the drift of sunspot groups from high to low solar latitude. This plot is called "the Butterfly Diagram." The tilt of the wings reveal the speed of the Conveyor Belt. [More]
Using historical sunspot records, Hathaway has succeeded in clocking the conveyor belt as far back as 1890. The numbers are compelling: For more than a century, "the speed of the belt has been a good predictor of future solar activity."
If the trend holds, Solar Cycle 25 in 2022 could be, like the belt itself, "off the bottom of the charts."
If the trend holds, Solar Cycle 25 in 2022 could be, like the belt itself, "off the bottom of the charts."
Wednesday, April 9, 2008
China's Three Gorges Dam: An Environmental Catastrophe?
Features - March 25, 2008
Even the Chinese government suspects the massive dam may cause significant environmental damage
By Mara Hvistendahl
SHANGHAI—For over three decades the Chinese government dismissed warnings from scientists and environmentalists that its Three Gorges Dam—the world's largest—had the potential of becoming one of China's biggest environmental nightmares. But last fall, denial suddenly gave way to reluctant acceptance that the naysayers were right. Chinese officials staged a sudden about-face, acknowledging for the first time that the massive hydroelectric dam, sandwiched between breathtaking cliffs on the Yangtze River in central China, may be triggering landslides, altering entire ecosystems and causing other serious environmental problems—and, by extension, endangering the millions who live in its shadow.
Government officials have long defended the $24-billion project as a major source of renewable power for an energy-hungry nation and as a way to prevent floods downstream. When complete, the dam will generate 18,000 megawatts of power—eight times that of the U.S.'s Hoover Dam on the Colorado River. But in September, the government official in charge of the project admitted that Three Gorges held "hidden dangers" that could breed disaster. "We can't lower our guard," Wang Xiaofeng, who oversees the project for China's State Council, said during a meeting of Chinese scientists and government reps in Chongqing, an independent municipality of around 31 million abutting the dam. "We simply cannot sacrifice the environment in exchange for temporary economic gain."
The comments appeared to confirm what geologists, biologists and environmentalists had been warning about for years: building a massive hydropower dam in an area that is heavily populated, home to threatened animal and plant species, and crossed by geologic fault lines is a recipe for disaster.
Among the damage wrought: "There's been a lot less rain, a lot more drought, and the potential for increased disease," says George Davis, a tropical medicine specialist at The George Washington University (G.W.) Medical Center in Washington, D.C., who has worked in the Yangtze River Basin and neighboring provinces for 24 years. "When it comes to environmental change, the implementation of the Three Gorges dam and reservoir is the great granddaddy of all changes."
Dam QuakeWhen plans for the dam were first approved in 1992, human rights activists voiced concern about the people who would be forced to relocate to make room for it. Inhabited for several millennia, the Three Gorges region is now a major part of western China's development boom. To date, the government has ordered some 1.2 million people in two cities and 116 towns clustered on the banks of the Yangtze to be evacuated to other areas before construction, promising them plots of land and small stipends—in some cases as little as 50 yuan, or $7 a month—as compensation.
Chinese and foreign scientists, meanwhile, warned that the dam could endanger the area's remaining residents. Among their concerns: landslides caused by increased pressure on the surrounding land, a rise in waterborne disease, and a decline in biodiversity. But their words fell on deaf ears. Harnessing the power of the Yangtze has been a goal since Nationalist leader Sun Yat-sen first proposed the idea in 1919. Mao Zedong, the father of China's communist revolution, rhapsodized the dam in a poem. The mega- project could not be realized in his lifetime, however, because the country's resources were exhausted by the economic failures of the Great Leap Forward in the late 1950s and then the social upheaval of the Cultural Revolution from the mid-1960s a to the early 1970s. Four decades later, the government resuscitated Mao's plans. The first of the Yangtze's famed gorges—a collection of steep bluffs at a bend in the river—was determined to be the perfect site.
In June 2003, nine years after construction began, the state-owned China Yangtze Three Gorges Development Corporation (CTGPC) filled the reservoir with 445 feet (135 meters) of water, the first of three increments in achieving the eventual depth of 575 feet (175 meters). The result is a narrow lake 410 miles (660 kilometers) long—60 miles (97 kilometers) longer than Lake Superior—and 3,600 feet (1,100 meters) wide, twice the width of the natural river channel. Scientists' early warnings came true just a month later, when around 700 million cubic feet (20 million cubic meters) of rock slid into the Qinggan River, just two miles (three kilometers) from where it flows into the Yangtze, spawning 65-foot (20-meter) waves that claimed the lives of 14 people. Despite the devastating results, the corporation three years later (in September 2006) raised the water level further—to 512 feet (156 meters). Since then, the area has experienced a series of problems, including dozens of landslides along one 20-mile (32-kilometer) stretch of riverbank. This past November, the ground gave out near the entrance to a railway tunnel in Badong County, near a tributary to the Three Gorges reservoir; 4,000 cubic yards (3,050 cubic meters) of earth and rock tumbled onto a highway. The landslide buried a bus, killing at least 30 people.
Fan Xiao, a geologist at the Bureau of Geological Exploration and Exploitation of Mineral Resources in Sichuan province, near several Yangtze tributaries, says the landslides are directly linked to filling the reservoir. Water first seeps into the loose soil at the base of the area's rocky cliffs, destabilizing the land and making it prone to slides. Then the reservoir water level fluctuates—engineers partially drain the reservoir in summer to accommodate flood waters and raise it again at the end of flood season to generate power—and the abrupt change in water pressure further disturbs the land. In a study published in the Chinese journal Tropical Geography in 2003, scholars at Guangzhou’s South China Normal University predicted that such tinkering with the water level could trigger activity in 283 landslide-prone areas.
That is apparently what happened to the 99 villagers of Miaohe, 10 miles (17 kilometers) upstream of the Yangtze, who saw the land behind their homes split into a 655-foot- (200-meter-) wide crack last year, soon after the reservoir water level was lowered for the summer floods. Officials evacuated them to a mountain tunnel where they camped for three months.
One of the greatest fears is that the dam may trigger severe earthquakes, because the reservoir sits on two major faults: the Jiuwanxi and the Zigui–Badong. According to Fan, changing the water level strains them. "When you alter the fault line's mechanical state," he says, "it can cause fault activity to intensify and induce earthquakes."
Many scientists believe this link between temblors and dams—called reservoir-induced seismicity—may have been what happened at California's Oroville Dam, in the foothills of the Sierra Nevada. The largest earthen dam in the U.S., it was constructed on an active fault line in the 1950s and filled in 1968. Seven years later, when the reservoir's water supply was restored to full capacity—after engineers lowered it 130 feet (40 meters) for maintenance—the area experienced an unusual series of earthquakes. U.S. Geological Survey seismologists subsequently found a strong link between the quakes and the refilling of the reservoir.
The Oroville area was sparsely populated, so little damage was done. But earthquakes have also been connected to past hydropower projects in China, where dams are often located in densely populated and seismically active river basins. Engineers in China blame dams for at least 19 earthquakes over the past five decades, ranging from small tremors to one near Guangdong province's Xinfengjiang Dam in 1962 that registered magnitude 6.1 on the Richter scale—severe enough to topple houses.
Surveys show that the Three Gorges region may be next. Chinese Academy of Engineering scholar Li Wangping reports on the CTGPC's Web site that the area registered 822 tremors in the seven months after the September 2006 reservoir-level increase. So far, none have been severe enough to cause serious damage. But by 2009, the dam's water level is set to be raised to its full 575-foot capacity and then lowered about 100 feet (30 meters) during flood season. That increase in water pressure, in water fluctuation and in land covered by the reservoir, Fan says, makes for a "very large possibility" that the situation will worsen.
Local news media report that whole villages of people relocated to make room for the dam will have to move a second time because of the landslides and tremors, indicating that officials failed to foresee the full magnitude of the dam's effects. Guangzhou's Southern Weekend late last year reported that villagers in Kaixian County were eager to move again, citing landslides, mudslides and ominous cracks that had appeared in the ground behind their homes. They also hoped that moving might resolve land allocation issues: Some said they received only half of the acreage they had been promised.
Water DisplacementThe dam is also taking a toll on China's animals and plants. The nation—which sprawls 3.7 million square miles (9.6 million square kilometers)—is home to 10 percent of the world's vascular plants (those with stems, roots and leaves) and biologists estimate that half of China's animal and plant species, including the beloved giant panda and the Chinese sturgeon, are found no where else in the world. The Three Gorges area alone accounts for 20 percent of Chinese seed plants—more than 6,000 species. Shennongjia, a nature reserve near the dam in Hubei province, is so undisturbed that it is famous for sightings of yeren, or "wild man"—the Chinese equivalent of "Big Foot"—as well as the only slightly more prosaic white monkey.
That biodiversity is threatened as the dam floods some habitats, reduces water flow to others, and alters weather patterns. Economic development has spurred deforestation and pollution in surrounding provinces in central China, endangering at least 57 plant species, including the Chinese dove tree and the dawn redwood. The reservoir created by Three Gorges dam threatens to flood the habitats of those species along with over 400 others, says Jianguo Liu, an ecologist at Michigan State University and guest professor at the Chinese Academy of Sciences who has done extensive work on biodiversity in China.
The dam further imperils delicate fish populations in the Yangtze. Downstream, near where the river empties into the East China Sea, the land around the Yangtze contains some of the densest clusters of human habitation in the world, and overfishing there has already endangered 25 of the river's 177 unique fish species. According to a 2003 letter to Science by Wuhan University ecologist Ping Xie, many of these fish evolved over time with the Yangtze flood plain. As the dam decreases flooding downstream, it will fragment the network of lakes around the middle as well as lower the Yangtze's water level, making it difficult for the fish to survive. The project has already contributed to the decline of the baiji dolphin, which is so rare that it is considered functionally extinct.
The reservoir could also break up land bridges into small islands, isolating clusters of animals and plants. In 1986, Venezuela's Raúl Leoni Dam flooded 1,660 square miles (4,300 square kilometers) of land, creating the vast Lake Guri, along with a scattering of nonsubmerged land. The nascent islands lost 75 percent of their biological species within 15 years, according to research published in Science.
To determine the true toll, the Three Gorges Dam is taking on animal and plant species, Liu says, long-term data is needed, so that decreases in population totals can be compared with natural species fluctuation. But he cautions that many of the dam's effects may not be immediately apparent. The project is altering reproduction patterns, meaning it may already be too late for some plants and animals. "In the short term, you see the species still there, but in the long term you could see [them] disappear," Liu says. It is here that State Council representative Wang's allusion to "hidden dangers" rings especially true.
Disease and DroughtWhen officials unveiled plans for the dam, they touted its ability to prevent floods downstream. Now, the dam seems to be causing the opposite problem, spurring drought in central and eastern China. In January, the China Daily (the country's largest English-language newspaper) reported that the Yangtze had reached its lowest level in 142 years—stranding dozens of ships along the waterway in Hubei and Jiangxi provinces. An unnamed official with the Yangtze River Water Resources Commission blamed climate change, even as he acknowledged that the dam had reduced the flow volume of the river by 50 percent. To make matters worse, China is now plowing ahead with a controversial $62-billion scheme to transfer water from the Yangtze to northern China, which is even more parched, through a network of tunnels and canals to be completed by 2050.
Meanwhile, at the mouth of the Yangtze residents of Shanghai, China's largest city, are experiencing water shortages. The decreased flow of fresh water also means that saltwater from the East China Sea now creeps farther upstream. This, in turn, seems to be causing a rise in the number of jellyfish, which compete with river fish for food and consume their eggs and larvae, thereby threatening native populations that are already dwindling as a result of overfishing. In 2004, a year after the dam was partially filled, scientists noted a jellyfish species in the Yangtze that had previously only reached the South China Sea.
The effects of the dam's disturbance of whole ecosystems could reverberate for decades. G.W.'s Davis is part of a project researching the disease schistosomiasis (a.k.a. snail fever or swimmer's itch), a blood parasite transmitted to humans by snails; people can get it by swimming or wading in contaminated fresh water when infected snails release larvae that can penetrate the skin. (Symptoms include fever, appetite and weight loss, abdominal pain, bloody urine, muscle and joint pain, along with nausea, a persistent cough and diarrhea.) The snails used to breed on small flood plain islands where annual flooding prevented a population explosion. Now, the decreased flow downstream from the dam is allowing the snails to breed unchecked, which has already led to a spike in schistosomiasis cases in some areas.
According to Davis, such alterations could precipitate a rise in other microbial waterborne diseases as well. "Once you dramatically change the climate and change water patterns, as is now seen in the Three Gorges region," he says, "you change a lot of environmental variables. Almost all infectious diseases are up for grabs."
The official recognition of the dam's dangers suggests that the project's environmental and public health impacts are starting to sink in. Political analysts speculate that President Hu Jintao and Premier Wen Jiabao are eager to distance themselves from a project they inherited. Although halting plans at this point would be an admission of government error, the openness following the Chongqing meeting raised the hopes of worried scientists that officials would take action to minimize the project's environmental and public health fallout.
Government-funded institutions have been quietly assessing possible recourses. Officials say they've spent more than $1.6 billion on fortifying landslide-prone areas and will spend an additional $3.2 billion on water cleanup over the next three years. In January the CTGPC signed a memorandum of understanding with the Nature Conservancy allowing that organization to consult on species protection and river health in the dam area. China's Ministry of Health, meanwhile, is trying to control schistosomiasis infections with a combination of drugs and applications of molluscicides, pesticides that wipe out the disease's snail carriers.
But these measures may not be sufficient to avert disaster. In February China's State Environmental Protection Administration said reservoir water quality targets had not been reached despite a cleanup effort that had been underway since 2001. And fighting schistosomiasis requires a more holistic, multi-pronged approach—particularly now that ecosystems in the Three Gorges region have been altered. To ward off an outbreak, Davis says, the government would have to prevent the use of night soil as fertilizer, build cement irrigation ditches, and ensure area villagers access to clean water. So far, that hasn't happened.
Government OversightIn the wake of media reports about the government's concerns, officials began to backpedal. In a November 2007 interview with state news agency Xinhua, State Council's Wang claimed that "no major geological disasters or related casualties" had occurred since the reservoir's water level was raised in 2006; five days later, the earth in Badong crumbled and the railroad tunnel landslide wiped out the bus and its passengers.
Following a brief period of openness, discussion of the dam's environmental effects has once again become largely taboo in China. Government officials fear that continued free discussion of the project's ramifications could lead to civil unrest. One internationally published Chinese scientist working in the Yangtze Basin declined to comment publicly, noting, "This is a very sensitive topic…. I can't give hypotheses."
Despite the Three Gorges dam's growing list of problems, however, hydropower remains an integral—and ostensibly green—component of China's energy mix. China still draws 82 percent of energy from coal, but large dams are crucial to the country's climate change program, which aims to increase its proportion of electricity from renewable resources from the current 7.2 percent to 15 percent by 2020. Over one third of that will come from hydropower—more than from any other source. Twelve new dams are planned for the upper Yangtze alone.
The logistical and environmental hurdles involved in executing these dams underscore China's commitment to hydropower. The Yangtze's newest dams include several smaller projects that are necessary to alleviate sedimentation caused by the Three Gorges reservoir. In his 2007 report to the National People's Congress, Prime Minister Wen Jiabao said that China had relocated 22.9 million people to make room for its large hydroprojects.
China's original goal was to fill the reservoir to its maximum level by 2013. Despite all the trouble, that target was moved up to 2009, Fan says, to boost hydropower output by an additional 2.65 billion kilowatt-hours each year.
"For the economic interests and profit of the Three Gorges Project Development Corporation," he says, "that's very important. But the function of any river, including the Yangtze, is not only to produce power. At the very least, [a river] is also important for shipping, alleviating pollution, sustaining species and ecosystems, and maintaining a natural evolutionary balance."
"The Yangtze doesn't belong to the Three Gorges Project Development Corporation," Fan adds. "It belongs to all of society."
Even the Chinese government suspects the massive dam may cause significant environmental damage
By Mara Hvistendahl
SHANGHAI—For over three decades the Chinese government dismissed warnings from scientists and environmentalists that its Three Gorges Dam—the world's largest—had the potential of becoming one of China's biggest environmental nightmares. But last fall, denial suddenly gave way to reluctant acceptance that the naysayers were right. Chinese officials staged a sudden about-face, acknowledging for the first time that the massive hydroelectric dam, sandwiched between breathtaking cliffs on the Yangtze River in central China, may be triggering landslides, altering entire ecosystems and causing other serious environmental problems—and, by extension, endangering the millions who live in its shadow.
Government officials have long defended the $24-billion project as a major source of renewable power for an energy-hungry nation and as a way to prevent floods downstream. When complete, the dam will generate 18,000 megawatts of power—eight times that of the U.S.'s Hoover Dam on the Colorado River. But in September, the government official in charge of the project admitted that Three Gorges held "hidden dangers" that could breed disaster. "We can't lower our guard," Wang Xiaofeng, who oversees the project for China's State Council, said during a meeting of Chinese scientists and government reps in Chongqing, an independent municipality of around 31 million abutting the dam. "We simply cannot sacrifice the environment in exchange for temporary economic gain."
The comments appeared to confirm what geologists, biologists and environmentalists had been warning about for years: building a massive hydropower dam in an area that is heavily populated, home to threatened animal and plant species, and crossed by geologic fault lines is a recipe for disaster.
Among the damage wrought: "There's been a lot less rain, a lot more drought, and the potential for increased disease," says George Davis, a tropical medicine specialist at The George Washington University (G.W.) Medical Center in Washington, D.C., who has worked in the Yangtze River Basin and neighboring provinces for 24 years. "When it comes to environmental change, the implementation of the Three Gorges dam and reservoir is the great granddaddy of all changes."
Dam QuakeWhen plans for the dam were first approved in 1992, human rights activists voiced concern about the people who would be forced to relocate to make room for it. Inhabited for several millennia, the Three Gorges region is now a major part of western China's development boom. To date, the government has ordered some 1.2 million people in two cities and 116 towns clustered on the banks of the Yangtze to be evacuated to other areas before construction, promising them plots of land and small stipends—in some cases as little as 50 yuan, or $7 a month—as compensation.
Chinese and foreign scientists, meanwhile, warned that the dam could endanger the area's remaining residents. Among their concerns: landslides caused by increased pressure on the surrounding land, a rise in waterborne disease, and a decline in biodiversity. But their words fell on deaf ears. Harnessing the power of the Yangtze has been a goal since Nationalist leader Sun Yat-sen first proposed the idea in 1919. Mao Zedong, the father of China's communist revolution, rhapsodized the dam in a poem. The mega- project could not be realized in his lifetime, however, because the country's resources were exhausted by the economic failures of the Great Leap Forward in the late 1950s and then the social upheaval of the Cultural Revolution from the mid-1960s a to the early 1970s. Four decades later, the government resuscitated Mao's plans. The first of the Yangtze's famed gorges—a collection of steep bluffs at a bend in the river—was determined to be the perfect site.
In June 2003, nine years after construction began, the state-owned China Yangtze Three Gorges Development Corporation (CTGPC) filled the reservoir with 445 feet (135 meters) of water, the first of three increments in achieving the eventual depth of 575 feet (175 meters). The result is a narrow lake 410 miles (660 kilometers) long—60 miles (97 kilometers) longer than Lake Superior—and 3,600 feet (1,100 meters) wide, twice the width of the natural river channel. Scientists' early warnings came true just a month later, when around 700 million cubic feet (20 million cubic meters) of rock slid into the Qinggan River, just two miles (three kilometers) from where it flows into the Yangtze, spawning 65-foot (20-meter) waves that claimed the lives of 14 people. Despite the devastating results, the corporation three years later (in September 2006) raised the water level further—to 512 feet (156 meters). Since then, the area has experienced a series of problems, including dozens of landslides along one 20-mile (32-kilometer) stretch of riverbank. This past November, the ground gave out near the entrance to a railway tunnel in Badong County, near a tributary to the Three Gorges reservoir; 4,000 cubic yards (3,050 cubic meters) of earth and rock tumbled onto a highway. The landslide buried a bus, killing at least 30 people.
Fan Xiao, a geologist at the Bureau of Geological Exploration and Exploitation of Mineral Resources in Sichuan province, near several Yangtze tributaries, says the landslides are directly linked to filling the reservoir. Water first seeps into the loose soil at the base of the area's rocky cliffs, destabilizing the land and making it prone to slides. Then the reservoir water level fluctuates—engineers partially drain the reservoir in summer to accommodate flood waters and raise it again at the end of flood season to generate power—and the abrupt change in water pressure further disturbs the land. In a study published in the Chinese journal Tropical Geography in 2003, scholars at Guangzhou’s South China Normal University predicted that such tinkering with the water level could trigger activity in 283 landslide-prone areas.
That is apparently what happened to the 99 villagers of Miaohe, 10 miles (17 kilometers) upstream of the Yangtze, who saw the land behind their homes split into a 655-foot- (200-meter-) wide crack last year, soon after the reservoir water level was lowered for the summer floods. Officials evacuated them to a mountain tunnel where they camped for three months.
One of the greatest fears is that the dam may trigger severe earthquakes, because the reservoir sits on two major faults: the Jiuwanxi and the Zigui–Badong. According to Fan, changing the water level strains them. "When you alter the fault line's mechanical state," he says, "it can cause fault activity to intensify and induce earthquakes."
Many scientists believe this link between temblors and dams—called reservoir-induced seismicity—may have been what happened at California's Oroville Dam, in the foothills of the Sierra Nevada. The largest earthen dam in the U.S., it was constructed on an active fault line in the 1950s and filled in 1968. Seven years later, when the reservoir's water supply was restored to full capacity—after engineers lowered it 130 feet (40 meters) for maintenance—the area experienced an unusual series of earthquakes. U.S. Geological Survey seismologists subsequently found a strong link between the quakes and the refilling of the reservoir.
The Oroville area was sparsely populated, so little damage was done. But earthquakes have also been connected to past hydropower projects in China, where dams are often located in densely populated and seismically active river basins. Engineers in China blame dams for at least 19 earthquakes over the past five decades, ranging from small tremors to one near Guangdong province's Xinfengjiang Dam in 1962 that registered magnitude 6.1 on the Richter scale—severe enough to topple houses.
Surveys show that the Three Gorges region may be next. Chinese Academy of Engineering scholar Li Wangping reports on the CTGPC's Web site that the area registered 822 tremors in the seven months after the September 2006 reservoir-level increase. So far, none have been severe enough to cause serious damage. But by 2009, the dam's water level is set to be raised to its full 575-foot capacity and then lowered about 100 feet (30 meters) during flood season. That increase in water pressure, in water fluctuation and in land covered by the reservoir, Fan says, makes for a "very large possibility" that the situation will worsen.
Local news media report that whole villages of people relocated to make room for the dam will have to move a second time because of the landslides and tremors, indicating that officials failed to foresee the full magnitude of the dam's effects. Guangzhou's Southern Weekend late last year reported that villagers in Kaixian County were eager to move again, citing landslides, mudslides and ominous cracks that had appeared in the ground behind their homes. They also hoped that moving might resolve land allocation issues: Some said they received only half of the acreage they had been promised.
Water DisplacementThe dam is also taking a toll on China's animals and plants. The nation—which sprawls 3.7 million square miles (9.6 million square kilometers)—is home to 10 percent of the world's vascular plants (those with stems, roots and leaves) and biologists estimate that half of China's animal and plant species, including the beloved giant panda and the Chinese sturgeon, are found no where else in the world. The Three Gorges area alone accounts for 20 percent of Chinese seed plants—more than 6,000 species. Shennongjia, a nature reserve near the dam in Hubei province, is so undisturbed that it is famous for sightings of yeren, or "wild man"—the Chinese equivalent of "Big Foot"—as well as the only slightly more prosaic white monkey.
That biodiversity is threatened as the dam floods some habitats, reduces water flow to others, and alters weather patterns. Economic development has spurred deforestation and pollution in surrounding provinces in central China, endangering at least 57 plant species, including the Chinese dove tree and the dawn redwood. The reservoir created by Three Gorges dam threatens to flood the habitats of those species along with over 400 others, says Jianguo Liu, an ecologist at Michigan State University and guest professor at the Chinese Academy of Sciences who has done extensive work on biodiversity in China.
The dam further imperils delicate fish populations in the Yangtze. Downstream, near where the river empties into the East China Sea, the land around the Yangtze contains some of the densest clusters of human habitation in the world, and overfishing there has already endangered 25 of the river's 177 unique fish species. According to a 2003 letter to Science by Wuhan University ecologist Ping Xie, many of these fish evolved over time with the Yangtze flood plain. As the dam decreases flooding downstream, it will fragment the network of lakes around the middle as well as lower the Yangtze's water level, making it difficult for the fish to survive. The project has already contributed to the decline of the baiji dolphin, which is so rare that it is considered functionally extinct.
The reservoir could also break up land bridges into small islands, isolating clusters of animals and plants. In 1986, Venezuela's Raúl Leoni Dam flooded 1,660 square miles (4,300 square kilometers) of land, creating the vast Lake Guri, along with a scattering of nonsubmerged land. The nascent islands lost 75 percent of their biological species within 15 years, according to research published in Science.
To determine the true toll, the Three Gorges Dam is taking on animal and plant species, Liu says, long-term data is needed, so that decreases in population totals can be compared with natural species fluctuation. But he cautions that many of the dam's effects may not be immediately apparent. The project is altering reproduction patterns, meaning it may already be too late for some plants and animals. "In the short term, you see the species still there, but in the long term you could see [them] disappear," Liu says. It is here that State Council representative Wang's allusion to "hidden dangers" rings especially true.
Disease and DroughtWhen officials unveiled plans for the dam, they touted its ability to prevent floods downstream. Now, the dam seems to be causing the opposite problem, spurring drought in central and eastern China. In January, the China Daily (the country's largest English-language newspaper) reported that the Yangtze had reached its lowest level in 142 years—stranding dozens of ships along the waterway in Hubei and Jiangxi provinces. An unnamed official with the Yangtze River Water Resources Commission blamed climate change, even as he acknowledged that the dam had reduced the flow volume of the river by 50 percent. To make matters worse, China is now plowing ahead with a controversial $62-billion scheme to transfer water from the Yangtze to northern China, which is even more parched, through a network of tunnels and canals to be completed by 2050.
Meanwhile, at the mouth of the Yangtze residents of Shanghai, China's largest city, are experiencing water shortages. The decreased flow of fresh water also means that saltwater from the East China Sea now creeps farther upstream. This, in turn, seems to be causing a rise in the number of jellyfish, which compete with river fish for food and consume their eggs and larvae, thereby threatening native populations that are already dwindling as a result of overfishing. In 2004, a year after the dam was partially filled, scientists noted a jellyfish species in the Yangtze that had previously only reached the South China Sea.
The effects of the dam's disturbance of whole ecosystems could reverberate for decades. G.W.'s Davis is part of a project researching the disease schistosomiasis (a.k.a. snail fever or swimmer's itch), a blood parasite transmitted to humans by snails; people can get it by swimming or wading in contaminated fresh water when infected snails release larvae that can penetrate the skin. (Symptoms include fever, appetite and weight loss, abdominal pain, bloody urine, muscle and joint pain, along with nausea, a persistent cough and diarrhea.) The snails used to breed on small flood plain islands where annual flooding prevented a population explosion. Now, the decreased flow downstream from the dam is allowing the snails to breed unchecked, which has already led to a spike in schistosomiasis cases in some areas.
According to Davis, such alterations could precipitate a rise in other microbial waterborne diseases as well. "Once you dramatically change the climate and change water patterns, as is now seen in the Three Gorges region," he says, "you change a lot of environmental variables. Almost all infectious diseases are up for grabs."
The official recognition of the dam's dangers suggests that the project's environmental and public health impacts are starting to sink in. Political analysts speculate that President Hu Jintao and Premier Wen Jiabao are eager to distance themselves from a project they inherited. Although halting plans at this point would be an admission of government error, the openness following the Chongqing meeting raised the hopes of worried scientists that officials would take action to minimize the project's environmental and public health fallout.
Government-funded institutions have been quietly assessing possible recourses. Officials say they've spent more than $1.6 billion on fortifying landslide-prone areas and will spend an additional $3.2 billion on water cleanup over the next three years. In January the CTGPC signed a memorandum of understanding with the Nature Conservancy allowing that organization to consult on species protection and river health in the dam area. China's Ministry of Health, meanwhile, is trying to control schistosomiasis infections with a combination of drugs and applications of molluscicides, pesticides that wipe out the disease's snail carriers.
But these measures may not be sufficient to avert disaster. In February China's State Environmental Protection Administration said reservoir water quality targets had not been reached despite a cleanup effort that had been underway since 2001. And fighting schistosomiasis requires a more holistic, multi-pronged approach—particularly now that ecosystems in the Three Gorges region have been altered. To ward off an outbreak, Davis says, the government would have to prevent the use of night soil as fertilizer, build cement irrigation ditches, and ensure area villagers access to clean water. So far, that hasn't happened.
Government OversightIn the wake of media reports about the government's concerns, officials began to backpedal. In a November 2007 interview with state news agency Xinhua, State Council's Wang claimed that "no major geological disasters or related casualties" had occurred since the reservoir's water level was raised in 2006; five days later, the earth in Badong crumbled and the railroad tunnel landslide wiped out the bus and its passengers.
Following a brief period of openness, discussion of the dam's environmental effects has once again become largely taboo in China. Government officials fear that continued free discussion of the project's ramifications could lead to civil unrest. One internationally published Chinese scientist working in the Yangtze Basin declined to comment publicly, noting, "This is a very sensitive topic…. I can't give hypotheses."
Despite the Three Gorges dam's growing list of problems, however, hydropower remains an integral—and ostensibly green—component of China's energy mix. China still draws 82 percent of energy from coal, but large dams are crucial to the country's climate change program, which aims to increase its proportion of electricity from renewable resources from the current 7.2 percent to 15 percent by 2020. Over one third of that will come from hydropower—more than from any other source. Twelve new dams are planned for the upper Yangtze alone.
The logistical and environmental hurdles involved in executing these dams underscore China's commitment to hydropower. The Yangtze's newest dams include several smaller projects that are necessary to alleviate sedimentation caused by the Three Gorges reservoir. In his 2007 report to the National People's Congress, Prime Minister Wen Jiabao said that China had relocated 22.9 million people to make room for its large hydroprojects.
China's original goal was to fill the reservoir to its maximum level by 2013. Despite all the trouble, that target was moved up to 2009, Fan says, to boost hydropower output by an additional 2.65 billion kilowatt-hours each year.
"For the economic interests and profit of the Three Gorges Project Development Corporation," he says, "that's very important. But the function of any river, including the Yangtze, is not only to produce power. At the very least, [a river] is also important for shipping, alleviating pollution, sustaining species and ecosystems, and maintaining a natural evolutionary balance."
"The Yangtze doesn't belong to the Three Gorges Project Development Corporation," Fan adds. "It belongs to all of society."
Subscribe to:
Posts (Atom)